Exercise 4.3

Question Number 1:-

Find HCF of the following monomials by completing the table below.

Monomials	HCF of numerical coefficients	HCF of 'p'	HCF of	HCF of	Required HCF
16p ³ q, 9pq ² r	1	P	9	1	Pq
10p ³ q ² r, 5p ² qr, 15p ² qr ²	5	Pa	9	٢	5pagr
14p ⁴ qr ⁴ , 28p ³ qr ² , 7p ² qr ² , 21p ² q ² r ⁴	7	Pa	9	ra	702 rd

Question No 1(b):

If all common factors with least power of three unknown polynomials are 2^2 , 3, pq and $\left(p+q\right)^2$ then what would be their HCF?

$$HCF = 2^{2} \times 3 \times pq (p+q)^{2}$$

 $HCF = 4 \times 3 pq (p+q)^{2}$
 $HCF = 12pq (p+q)^{2}$

Question No 1(c):

Write any two polynomial of your choice having HCF of 1.

Question No 1(d):

The only comman factor of two polynomial is (m - n) and the only uncommon factor is $m^2 + n^2$, can you guess the unknown polynomials?

Question No 1(e):

Can you guess HCF of two polynomials $x^3 + 5x + 1$ and $1 + 5x + x^3$ without any procedure?

Find HCF of the following by factorization

$$(x+y)(x+y)$$

$$\frac{\chi^2 - y^2}{y^2}$$

$$\Im(a-b)^{3}$$
, $a^{2}-2ab+b^{2}$

$$(a-b)^{3}$$

$$(a-b)(a-b)(a-b)$$

$$a^2 + 2ab + b^2$$

$$HCF = a^2 + b^2 - 2ab$$

$$\Theta = a^3b - ab^3, a^5b^2 - a^2b^5$$

$$a^3b-ab^3$$
 $a^5b^2-a^2b^5$

$$ab(a^2-b^2)$$
 $a^2b^2(a^3-b^3)$

$$x^{2}-49$$

$$x^{2}-4x-21$$

$$(n)^{2}-(7)^{2}$$

$$x^{2}-7x+3x-21$$

$$(x+7)(n-7)$$

$$x(x-7)+3(x-7)$$

$$(x-7)(x+3)$$

$$|3x^{2}+x-1| | |5x^{2}+8x+1|$$

$$|3x^{2}+4x-3x-1| | |5x^{2}+5x+3x+1|$$

$$|4x(3x+1)-1(3x+1)| | |5x(3x+1)+1(3x+1)|$$

$$(3n+1)(4x-1) \qquad (3x+1)(5x+1)$$

$$HCF = (3x+1)$$

$$(7) c^{2}x^{2}-d^{2}, acx^{2}-bcx+adx-bd$$

$$\frac{c^{2}x^{2}-d^{2}}{(cx)^{2}-d^{2}} = \frac{acx^{2}-bcx+adx-bd}{cx(ax-b)+d(ax-b)}$$

$$\frac{c}{(cx+d)(cx-d)} = \frac{acx^{2}-bcx+adx-bd}{(ax-b)(cx+d)}$$

$$(8)$$
 m^2-n^2 , m^4-n^4 , m^6-n^6

$$m^{2}-n^{2} \qquad m^{4}-n^{4} \qquad m^{6}-n^{6}$$

$$(m+n)(m-n) \qquad (m^{2})^{2}-(n^{2})^{2} \qquad (m^{3})^{2}-(n^{3})^{2}$$

$$(m^{2}+n^{2})(m^{2}-n^{2})(m^{3}+n^{3})(m^{3}-n^{3})$$

$$(m^{2}+n^{2})(m+n)(m-n) \qquad (m+n)(m^{2}+n^{2}-mn)(m-n)(m^{2}+n^{2}+mn)$$

(9) $an^{2} + 2a^{2}x + a^{3}$, $2an^{2} - 4a^{2}n - 6a^{3}$, $3(ax + a^{2})^{2}$ $an^{2} + 2a^{2}n + a^{3}$ $2an^{2} - 4a^{2}n - 6a^{3}$ $3(ax + a^{2})^{2}$ $a(n^{2} + 2an + a^{2}) 2a(n^{2} - 2an - 3a^{2}) 3a^{2}(n + a)^{2}$ a(n + a) $2a(n^{2} - 3an + an - 3a^{2}) 3a^{2} a(n + a)(n + a)$ a(n + a)(n + a) 2a[n(n - 3a) + a(n - 3a)]a(n + a)(n + a)(n + a) 2a[n(n - 3a)]

HCF = a(n+a)